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The Properties of Liquid Carbon 1 

J. Steinbeck, 2'3 G. Dresselhaus,  4 and M. S. Dresselhaus 2'5 

A model for the transport properties of liquid carbon based on Ziman liquid 
metal theory with refinements for polyvalent liquid metals and Fermi surface 
blurring is applied to calculate the electrical resistivity of liquid carbon at the 
melting temperature. The thermal and electrical properties predicted by the 
model are compared to experimental results using numerical heat flow calcula- 
tions and found to be in good agreement with pulsed-current heating 
experiments on the resistivity of carbon fibers. 

KEY WORDS: carbon (liquid); electrical resistivity; high temperatures; laser 
heating. 

1. I N T R O D U C T I O N  

The proper t ies  of  the l iquid phase  of ca rbon  have been of recent interest  
because exper imenta l  results of r ap id -pu l sed  laser heat ing suggest that  two 
different l iquid phases of  ca rbon  may  in fact exist [1, 2] .  The proper t ies  of 
l iquid ca rbon  are difficult to de te rmine  by direct  obse rva t ion  due to the 
ext reme tempera tu res  ( > 4 0 0 0 K )  required to melt  solid ca rbon  [ 3 , 4 ] ,  
thereby forcing a rel iance on indirect  me thods  for the de te rmina t ion  of the 
t r anspor t  and  opt ica l  p roper t ies  of mol ten  carbon.  Stevenson and  Ashcroft  
[ 5 ]  have ca lcula ted  the electr ical  resist ivity of metal l ic  l iquid ca rbon  in the 
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Fig. 1. Liquid structure factor for liquid carbon 
using the Percus-Yevick theory for packing 
fractions t/= 0.3, 0.4, 0.5. 

high-density (>25 g . c m  - 3 )  regime. In their work, the Ziman theory [6] 
was applied using a structure factor (see Fig. 1) for liquid carbon calculated 
from the Percus-Yevick theory [7], and the electrical resistivity was then 
calculated using the Born approximation. We have extended this model to 
the low-density limit and find that the predictions of this model are in good 
agreement with an experimental pulsed-current heating determination of 
the resistivity of liquid carbon [8]. 

2. CALCULATIONS 

Recent pulsed-current melting experiments on carbon fibers indicate 
that liquid carbon is a liquid metal [8]. On this basis, a model for the 
properties of low-density liquid carbon (1.6 g-cm -3) has been constructed 
using Ziman liquid metal theory, which accounts for resistivity experiments 
on most liquid metals. The Ziman liquid metal theory requires calculation 
of the electron mean free path A from the liquid structure factor a(k) and 
a model potential v(k) for the liquid according to the relation 

~1 - dkkSa(k ) Iv(k)l 2 F(k, kf,  l) (1) 

In the conventional Ziman liquid metal theory, the Fermi surface blurring 
effect (discussed below) is neglected by setting F(k, Icy, l) = 1/k. 

Of the various parameters, the electron mean free path for liquid 
carbon is the most sensitive to the atomic density of the liquid [9]. 
Experimental work by Bundy [3] provides information about the density 
of liquid carbon through use of the Clausius-Clapeyron relation. From 
Bundy's data for dp/dT and for the heat of fusion [3], the density of liquid 
carbon is determined to be ~1.6 g-cm -3. 
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Since liquid metals have nearly spherical Fermi surfaces, various 
parameters (such as the electron density ne, the Fermi wave vector kr, the 
Fermi velocity vf, and the Fermi energy Er) may be calculated easily on the 
basis of a spherical Fermi surface and the results are given in Table I [10]. 
We assume, as for other polyvalent liquid metals, that the electron mass is 
the free electron rest mass, because of a lack of detailed experimental data 
on the effective mass of the carriers in polyvalent liquid metals. 

The liquid structure factor a(k) for liquid carbon is calculated by 
applying the integral formula for a(k) developed by Ashcroft and Lekner 
[-7] to liquid carbon. Figure 1 shows the structure factor for liquid carbon 
assuming the packing fractions, r/=0.3, 0.4, and 0.5, which are typical 
values of r/for liquid metals [7].  From Fig. 1 for the liquid structure factor, 
it is seen that the intensity of the primary peak increases as the packing 
fraction increases. This behavior is expected since as more atoms are 
packed into a constant volume, their positions become more rigidly fixed 
due to finite size effects of the atoms in the liquid. 

The model potential used to calculate the transport properties of 

Table I: A S u m m a r y  of the Properties for the Metallic Liquid 
Carbon Phase [ 1 0 ]  

Symbol Property Value Model 

n~ Electron density 3.2 x 1023 cm 3 4 electrons/atom 
kf Fermi wave vector 2.1 x 108 cm 1 Fermi gas 
vf Fermi velocity 2.45 x 108 cm �9 s 1 Fermi  gas 
Ef Fermi energy 16.9 eV Fermi  gas 
Pm Mass density 1.6 g .  c m - 3  Clausius-Clapeyron 
a M e a n  C - C  dis tance 2.06/~ - -  

T m Melting point 4450 K Disorder depth calculation 
T v Boiling point 4700 K Vaporization calculation 
Hf Heat of fusion 105 k J -  mol  - 1 Thermodynamic models 
S t Entropy of fusion 2.63 J .  m o l - 1 .  K i Thermodynamic models 
p~ Electrical resistivity 30 p Q .  cm Pulsed-current experiments 

to(T) T h e r m a l  conduct iv i ty  2.9 W - c m - 1  - K  1 Wiedemann-Franz 
Cp(T)  Heat capacity 26 J .  mol  - 1 . K - 1 Fermi gas 

rio Compress ibi l i ty  6.4 x 10 - 12 Pa  - i Model calculation 
A Mean free path 3.4 ~ Ziman liquid metal model  

Rf Reflectivity 0.82 2 = 694 n m  (Drude )  

Rf Reflectivity 0.7 2 = 248 n m  (Dru d e )  

c~ Absorption coefficient 1.4 x 106 c m - 1  2 = 694 n m  (Dru d e )  

ct Absorption coefficient 1.7 x 106 c m - 1  2 = 248 n m  (Dru d e )  

D 1 Liquid diffusivity 10 -4 em 2 . s - 1 Liquid segregation model 
Vp Interface diffusive speed 26 m .  s - 1 Liquid segregation model 
k Segregation coefficient 0.17 Liquid segregation model 
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liquid carbon is the Heine Abarenkov model potential [11, 12]. Using the 
parameters given in Table I the model potential for liquid carbon is 
calculated directly. The constants Ao, A1, and A2 needed for calculation of 
the Heine-Abarenkov model potential were calculated using the energies of 
the carbon 3s, 3p, and 3d orbitals and tabulated values for the Coulomb 
wave functions [13] as reported by Animalu [-14]. The constants'are given 
by Ao -- 2.05, A1 = 2.44, and A2 = 2.65. 

In Fig. 2 the model potentials calculated for carbon and silicon [-14] 
are shown and compared for 0 < k/2kf < 2, illustrating the rapid decrease in 
the potential as k becomes smaller. Note  the qualitatively similar behavior 
of the two potentials (for C and for Si) with the nodes at similar values of 
k/2kf. Comparing Figs. 1 and 2 for liquid carbon, the node in the 
calculated model potential is seen to occur at a k value which is near the 
center of the primary peak in the liquid structure factor. Thus the contribu- 
tion to the scattering [-see Eq. (1)] will not be large even for k values where 
the structure factor is greatest. Initial calculations of A in liquid carbon 
using Eq. (1) with F(k, kf, l) =l /k  show that the mean free path is only a 
few interatomic spacings. Therefore, the Ziman model calculations were 
refined to include the blurring of the Fermi surface due to electron scatter- 
ing using the Ferraz and March formula [-16] for Fermi surface blurring. 
The results for F(k, kf, l) used in the calculation of Eq. (1) are shown in 
Fig. 3, where k and kf denote the two wave vectors involved in the scatter- 
ing event. In the limit l -~ oo (where l is the electron mean free path for the 
unblurred Fermi surface model), the difference between the initial and the 
final k vectors cannot exceed 2kf. 
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Fig. 2. The model potential (eV) for carbon 
compared with the model potential for Si [15] 
calculated using the Heine-Abarenkov model 
[12]. The numbers in the inset are the values of 
the potential at k ~ 0. 
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Fig. 3, The calculated functions F(k, kf ,  l ~ co ) 
and F(k, kr, l =  3.2 ~.) plotted for liquid carbon 
illustrating the effect of a finite electron mean 
free path. Note that the integral for the mean 
free path must now be extended beyond 2kf. 

Since the potential, v(k) falls off more rapidly than k 4, the integral 
may be evaluated over a finite region (e.g., the first two diameters of the 
Fermi sphere) and a good estimate of the electron mean free path A is still 
obtained. Then evaluating the full integral in Eq. (1) by numerical techni- 
ques, we obtain for the electron mean free path for liquid carbon A = 3.4 ~, 
close to the value obtained with the simple calculation which neglected the 
Fermi surface blurring effect. 

From the calculated A, the electrical resistivity of liquid carbon p~ 
immediately follows as 

mvf 39.5 ~ts'2 - cm (2) 
Pl = nee2A 

where we have again used the free electron gas properties [ 1 ]. This value 
of p~ compares favorably with the experimental value for the electrical 
resistivity of liquid carbon ~30___ 8/~f2 .cm [8]. It is also found that the 
calculated electrical resistivity is relatively insensitive to the packing density 
or hard-sphere radius for carbon. 

Since all liquid metals can be approximately modeled as degenerate 
Fermi gases, we may use this fact to calculate most of the thermal proper- 
ties of liquid carbon (see Table I). The specific heat of the liquid at 
constant pressure Cp(T) is given by 

, 7rZkB T 
Co(T ) = 3R + ~ g (3) 

where R is the gas constant. The first term on the right-hand side of Eq. (3) 
is the atomic contribution to  C p ( T ) ,  while the second term on the right- 
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hand side is the electronic contribution. The electronic contribution to the 
thermal conductivity ~c can be calculated using the Wiedemann Franz 
relation 

2 2 ZC kB T 
K 3e2 Pl (4) 

where p~ is the electrical resistivity calculated above. 
The specific heat for liquid carbon has been calculated by Leider et al. 

[173 and the agreement between the liquid metal theory prediction and the 
prediction by Leider et al. [17] for liquid carbon agrees to within ~ 10%. 
The temperature dependence of the specific heat in both models is linear. 

The salient feature of the thermal conductivity is the large increase in 
the thermal conductivity when graphite melts. The thermal conductivity 
increases to ~ 3 W- cm- 1. K -  1 when graphite becomes molten. This value 
is ~ 4 times larger than the in-plane thermal conductivity of graphite at the 
melting temperature, while the liquid thermal conductivity is ~ 100 times 
the c-axis thermal conductivity of graphite at the melting temperature, 

The optical properties of liquid carbon may also be calculated based 
on the Drude theory [9]. Using the standard relations for the dependence 
of the optical constants on the complex dielectric function, the reflectivity 
R(~o) normal to the surface and the absorption coefficient, c~(o~), can be 
calculated. See Table I for the values of ~(o) and R(o) for frequencies o3 
of the pulsed lasers used to melt graphite. [1 ] 

3. DISCUSSION AND CONCLUSIONS 

Since liquid carbon is a polyvalent liquid metal, the temperature 
dependence of the electrical resistivity is very weak for temperatures 
between the melting point (Tm~4450K) and the boiling point 
(Tv~4700 K). The reason for the insensitivity to the temperature is that 
changes in the structure factor at low k have little effect on changing the 
integral in Eq. (1) since the low k values are suppressed by the k 5 weighting 
of the integral. Also, the primary peak in the structure factor falls close to 
the node in the model potential, and further, a(k) ~ 1 for k > 2k r so that 
changes in a(k) do not significantly alter the results for A. The weak 
temperature dependence of the calculated electrical resistivity of liquid 
carbon is also in good agreement with the experimental measurements by 
Heremans et al. [8], where the temperature of the liquid carbon (super- 
heated) is known to have gone above 5000 K, but no increase in the 
electrical resistivity is observed. Therefore, the temperature dependence of 
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to(T) and Cp(T) for liquid carbon is given by Eqs. (3) and (4), assuming Pl 
and Er to be constant in the temperature range between Tm and T~. 

The most convincing proof that the liquid metal model provides the 
correct description for liquid carbon comes when the model is tested in 
heat flow calculations for pulsed-laser [10] and pulsed-current [8] heating 
experiments. Figure 4 shows the good agreement between the resistance 
versus time experimental traces for pulsed current melting of two very 
different graphitic fibers with a numerical simulation of the experiment 
using the liquid metal model for liquid carbon. This particular calculation 
tests both the electrical resistivity and the thermal properties predicted by 
the calculations above. 
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Fig. 4. Comparison of the measured (solid curve) 
resistance versus time traces for two carbon fibers 
heated by a pulsed current [8] with the correspond- 
ing traces calculated using the liquid metal model 
for liquid carbon. The carbon fiber with a heat 
treatment temperature THT= 1700~ is highly dis- 
ordered, while that for THx=2850~ is highly 
graphitic. The schematic for the experimental 
arrangement used to heat and melt the graphite 
fibers is shown in the inset to the lower trace. 
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Refinements to the model such as improving the model potential for 
atomic carbon and understanding the molecular nature of the liquid near 
the melting temperature may provide improved agreement with experimen- 
tal results. 
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